数字电子教程

数字电子 - 主页

数字电子基础

数字系统的类型 信号类型 逻辑电平和脉冲波形 数字系统组件 数字逻辑运算 数字系统优势

数字系统

数字系统 二进制数表示 二进制运算 有符号二进制运算 八进制运算 十六进制运算 补码运算

进制转换

进制转换 二进制到十进制转换 十进制到二进制转换 二进制到八进制转换 八进制到二进制转换 八进制到十进制转换 十进制到八进制的转换 十六进制到二进制的转换 二进制到十六进制的转换 十六进制到十进制的转换 十进制到十六进制的转换 八进制到十六进制的转换 十六进制到八进制的转换

二进制代码

二进制代码 8421 BCD 码 余3码 格雷码 ASCII 码 EBCDIC 码 代码转换 错误检测和纠正码

逻辑门

逻辑门 与门 或门 非门 通用门 异或门 异或门 CMOS 逻辑门 使用二极管电阻逻辑的或门 与门与或门 两级逻辑实现 阈值逻辑

布尔代数

布尔代数 布尔代数定律 布尔函数 德摩根定理 SOP 和 POS 形式 POS 转换为标准 POS 形式

最小化技术

K-Map 最小化 三变量 K-Map 四变量 K-Map 五变量 K-Map 六变量K-Map 无关条件 Quine-McCluskey 方法 最小项和最大项 规范形式和标准形式 最大项表示 使用布尔代数进行简化

组合逻辑电路

数字组合电路 数字算术电路 多路复用器 多路复用器设计程序 多路复用通用门 使用 4:1 多路复用器的 2 变量函数 使用 8:1 多路复用器的 3 变量函数 解复用器 多路复用器与解复用器 奇偶校验位生成器和检查器 比较器 编码器 键盘编码器 优先级编码器 解码器 算术逻辑单元 7 段 LED 显示屏

代码转换器

代码转换器 二进制到十进制转换器 十进制到 BCD 转换器 BCD 到十进制转换器 二进制到格雷码转换器 格雷码到二进制转换器 BCD 到 Excess-3 转换器 Excess-3 到 BCD 转换器

加法器

半加法器 全加器 串行加器 并行加器 使用半加器的全加器 半加器与全加器 全带 NAND 门的加法器 带 NAND 门的半加法器 二进制加法器-减法器

减法器

半减法器 全减法器 并行减法器 使用 2 个半减法器的全减法器 使用 NAND 的半减法器门

顺序逻辑电路

时序电路 时钟信号和触发 锁存器 移位寄存器 移位寄存器应用 二进制寄存器 双向移位寄存器 计数器 二进制计数器 非二进制计数器 同步计数器的设计 同步与异步计数器 有限状态机 算法状态机

触发器

触发器 触发器的转换 D 触发器 JK 触发器 T 触发器 SR 触发器 时钟控制 SR 触发器 非时钟控制 SR 触发器 时钟控制 JK 触发器 JK 至 T 触发器 SR 至 JK触发器 触发器:触发方法 主从 JK 触发器 竞争条件

A/D 和 D/A 转换器

模拟数字转换器 数字模拟转换器 DAC 和 ADC IC

逻辑门的实现

使用 NAND 门实现非门 使用 NAND 门实现或门 使用 NAND 门实现 AND 门 使用 NAND 门实现 NOR 门 使用 NAND 门实现 XOR 门 使用 NAND 门实现 XNOR 门 使用 NOR 门实现 NOT 门 使用 NOR 门实现 OR 门 使用 NOR 门实现 AND 门 NAND 门和 NOR 门之间的区别 使用 NOR 门实现 XOR 门 使用 NOR 门实现 XNOR 门 使用 CMOS 的 NAND/NOR 门 使用 NAND 门的全减法器 使用 2:1 MUX 的 AND 门 使用 2:1 MUX 的 OR 门 使用 2:1 MUX 的非门

存储设备

存储设备 RAM 和 ROM 高速缓存设计

可编程逻辑设备

可编程逻辑设备 可编程逻辑阵列 可编程阵列逻辑 现场可编程门阵列

数字电子系列

数字电子系列

CPU 架构

CPU 架构

数字电子资源

数字电子 - 资源 数字电子 - 讨论


十进制到二进制的转换

十进制到二进制的转换

使用 double-dabble 方法可以将十进制数转换为其等效的二进制数。在此方法中,给定十进制数的整数部分连续除以 2,小数部分连续乘以 2。

在整数部分,从下往上读取的余数给出二进制等效值的整数部分。在小数部分,从上往下读取的进位给出二进制等效值的小数部分。

按照以下步骤将十进制数转换为二进制等效值 −

步骤 1 − 将给定十进制数的整数部分连续除以 2,并从下往上读取余数。

步骤 2 −将给定十进制数的小数部分依次乘以 2,并从上到下读取进位。

让我们看一些例子来理解十进制数转换成其等效的二进制数。

示例 1

将 (28)10 转换为二进制等价数。

解决方案

给定的十进制数是一个整数。因此,我们将十进制数逐一除以 2,然后向上读取余数,以获得等效的二进制数。

十进制 余数
2 28
2 14 0
2 7 0
2 3 1
2 1 1
0 1

从下往上读取余数,结果为 (11100)2。它是 (28)10 的二进制等价数。

示例 2

将 (165.75)10 转换为其等价二进制数。

解决方案

给定的十进制数是具有整数部分和小数部分的混合数。因此,为了获得其等价二进制数,我们分别转换整数部分和小数部分。

16510 的二进制等价数如下获得,

十进制 余数
2 165
2 82 1
2 41 0
2 20 1
2 10 0
2 5 0
2 2 1
2 1 0
0 1

从下往上读取余数,16510 的二进制等价于 (10100101)2

现在,让我们转换给定数字的小数部分 (0.75)。

要将给定的十进制分数转换为二进制,我们将其乘以 2,如下所示,

十进制 乘积 进位
0.75 × 2 1.5 1
0.5 × 2 1.0 1
0 × 2 0

从上到下读取进位,结果为 0.11。因此,(0.75)10 的二进制等价数是 (0.11)2

因此,(165.75)10 = (10100101.11)2