NumPy 教程

NumPy 首页 NumPy 简介 NumPy 环境

数组

NumPy Ndarray 对象 NumPy 数据类型

创建和操作数组

NumPy 数组创建例程 NumPy 数组操作 NumPy 基于现有数据创建数组 NumPy 基于数值范围创建数组 NumPy 数组迭代 NumPy 重塑数组 NumPy 连接数组 NumPy 堆叠数组 NumPy 拆分数组 NumPy 展平数组 NumPy 转置数组

索引与切片

NumPy 索引 &切片 NumPy 索引 NumPy 切片 NumPy 高级索引 NumPy 高级索引 NumPy 字段访问 NumPy 使用布尔数组切片

数组属性与操作

NumPy 数组属性 NumPy 数组形状 NumPy 数组大小 NumPy 数组步长 NumPy 数组元素大小 NumPy 广播 NumPy 算术运算 NumPy 数组加法 NumPy 数组减法 NumPy 数组乘法 NumPy 数组除法

高级数组运算

NumPy 交换数组的轴 NumPy 字节交换 NumPy 副本和视图 NumPy 逐元素数组比较 NumPy 过滤数组 NumPy 连接数组 NumPy 排序、搜索& 计数函数 NumPy 搜索数组 NumPy 数组并集 NumPy 查找唯一行 NumPy 创建日期时间数组 NumPy 二元运算符 NumPy 字符串函数 NumPy 矩阵库 NumPy 线性代数 NumPy Matplotlib NumPy 使用 Matplotlib 绘制直方图

排序和高级操作

NumPy 数组排序 NumPy 沿轴排序 NumPy 使用花式索引进行排序 NumPy 结构化数组 NumPy 创建结构化数组 NumPy 操作结构化数组 NumPy 记录数组 NumPy 加载数组 NumPy 保存数组 NumPy 将值附加到数组 NumPy 交换列数组 NumPy 将轴插入数组

处理缺失数据

NumPy 处理缺失数据 NumPy 识别缺失值 NumPy 移除缺失数据 NumPy 插补缺失值数据

性能优化

NumPy 使用数组进行性能优化

线性代数

NumPy 线性代数 NumPy 矩阵库 NumPy 矩阵加法 NumPy 矩阵减法 NumPy 矩阵乘法 NumPy 逐元素矩阵运算 NumPy 点积 NumPy 矩阵求逆 NumPy 行列式计算 NumPy 特征值 NumPy 特征向量 NumPy 奇异值分解 NumPy 求解线性方程 NumPy 矩阵范数

元素级矩阵运算

NumPy 总和 NumPy 平均值 NumPy 中位数 NumPy 最小值 NumPy 最大值

集合运算

NumPy 唯一元素 NumPy 交集 NumPy 并集 NumPy 差集

随机数生成

NumPy 随机数生成器 NumPy 排列和重排 NumPy 均匀分布 NumPy 正态分布 NumPy 二项分布 NumPy 泊松分布 NumPy 指数分布 NumPy 瑞利分布 NumPy 逻辑分布 NumPy 帕累托分布 NumPy 使用 Seaborn 可视化分布 NumPy 多项分布 NumPy 卡方分布 NumPy Zipf 分布

文件输入 &输出

NumPy 使用 NumPy 进行 I/O NumPy 从文件读取数据 NumPy 将数据写入文件 NumPy 支持的文件格式

数学函数

NumPy 数学函数 NumPy 三角函数 NumPy 指数函数 NumPy 对数函数 NumPy 双曲函数 NumPy 舍入函数

傅里叶变换

NumPy 离散傅里叶变换 (DFT) NumPy 快速傅里叶变换 (FFT) NumPy 逆傅里叶变换 NumPy 傅里叶级数和变换 NumPy 信号处理应用 NumPy 卷积

多项式

NumPy 多项式表示 NumPy 多项式运算 NumPy 求多项式的根 NumPy 求多项式的根

统计

NumPy 统计函数 NumPy 描述性统计

日期时间函数

NumPy 日期和时间基础知识 NumPy 表示日期和时间 NumPy 日期和时间运算 NumPy 使用日期时间进行索引 NumPy 时区处理 NumPy 时间序列分析 NumPy 处理时间增量 NumPy 闰秒处理 NumPy 矢量化日期时间运算

ufunc

NumPy ufunc 简介 NumPy 创建通用函数 (ufunc) NumPy 算术通用函数 (ufunc) NumPy 小数舍入 ufunc NumPy 对数通用函数(ufunc) NumPy 求和通用函数 (ufunc) NumPy 乘积通用函数 (ufunc) NumPy 差分通用函数 (ufunc) NumPy 寻找最小公倍数 (LCM) NumPy 寻找最大公约数 (GCD) NumPy 三角函数 (ufunc) NumPy 双曲线 (ufunc) NumPy 集合运算(ufunc)

实用资源

NumPy 快速指南 NumPy 备忘单


NumPy - 拆分数组

拆分 NumPy 数组

在 NumPy 中,拆分数组是将单个数组划分为多个子数组的一种方法。您可以沿任意轴进行拆分,具体取决于您想要如何划分数据。NumPy 提供了多个函数来以不同的方式拆分数组。它们如下:

  • 使用 numpy.split() 函数
  • 使用 numpy.array_split() 函数
  • 使用 numpy.hsplit() 函数
  • 使用 numpy.vsplit() 函数
  • 使用 numpy.dsplit() 函数

使用 split() 函数拆分数组

我们可以使用 NumPy 中的 split() 函数将数组沿指定轴拆分为多个子数组。数组将根据提供的索引进行划分。语法如下:

numpy.split(array, indices_or_sections, axis=0)

其中:

  • array - 待拆分的输入数组。

  • indices_or_sections - 可以是整数,也可以是已排序的整数一维数组。

    如果是整数,则指定要创建的等大小子数组的数量。该数组必须能够被均匀地分成该数量的部分。

    如果是已排序的整数一维数组,则指定拆分数组的点。

  • axis - 拆分数组所沿的轴。默认值为 0(二维数组沿行拆分)。

示例:拆分成大小相等的子数组

在下面的示例中,我们使用 numpy.split() 函数将数组 "arr" 沿列(axis=1)拆分成 3 个大小相等的子数组 -

import numpy as np

# 数组
arr = np.arange(9).reshape(3, 3)

# 拆分成 3 个大小相等的子数组
split_arr = np.split(arr, 3, axis=1)

print("原始数组:")
print(arr)
print("
沿轴 1 拆分成 3 个大小相等的子数组:")
for sub_arr in split_arr:
    print(sub_arr)

以下是得到的输出 -

原始数组:
[[0 1 2]
[3 4 5]
[6 7 8]]

沿轴 1 拆分为 3 个相等的子数组:
[[0]
[3]
[6]]
[[1]
[4]
[7]]
[[2]
[5]
[8]]

示例:在特定索引处拆分

这里,我们使用 NumPy 中的 split() 函数沿行(axis=0)在索引 [1, 2] 处拆分数组 -

import numpy as np

# 数组
arr = np.arange(9).reshape(3, 3)

# 在指定索引处拆分数组
split_arr = np.split(arr, [1, 2], axis=0)

print("
沿轴 0 在索引 [1, 2] 处拆分:")
for sub_arr in split_arr:
print(sub_arr)

这将产生以下结果 -

沿轴 0 在索引 [1, 2] 处拆分:
[[0 1 2]]
[[3 4 5]]
[[6 7 8]]

使用 array_split() 函数拆分数组

我们还可以使用 NumPy 中的 array_split() 函数将数组沿指定轴拆分为多个子数组。与 numpy.split() 函数不同,如果数组无法均匀划分,array_split() 函数允许进行不等分。

当数组无法均匀划分为指定数量的部分时,numpy.array_split() 函数会确保生成的子数组大小尽可能相等,并将任何多余的元素分配给较早的子数组。语法如下:

numpy.array_split(array, indices_or_sections, axis=0)

其中:

  • array - 需要拆分的输入数组。

  • indices_or_sections - 可以是整数,也可以是已排序的整数一维数组。

    如果是整数,则指定要创建的等大小子数组的数量。数组必须尽可能均匀地划分。

    如果是已排序的整数一维数组,则指定拆分数组的点。

  • axis - 拆分数组所沿的轴。默认值为 0(二维数组沿行拆分)。

示例

在下面的示例中,我们使用 numpy.array_split() 函数将一个包含"10"个元素的一维数组拆分为 3 个不相等的子数组 -

import numpy as np

# 数组
arr = np.arange(10)

# 沿轴 0 拆分为 3 个子数组
split_arr = np.array_split(arr, 3)

print("原始数组:")
print(arr)
print("
拆分为 3 个不相等的子数组:")
for sub_arr in split_arr:
    print(sub_arr)

以下是上述代码的输出 -

原始数组:
[0 1 2 3 4 5 6 7 8 9]

拆分为 3 个不相等的子数组:
[0 1 2 3]
[4 5 6]
[7 8 9]

水平拆分

我们可以使用 NumPy 中的 hsplit() 函数沿水平轴(axis = 1)拆分二维数组。此函数将数组水平划分为多个子数组,从而有效地分隔数据列。语法如下:-

numpy.hsplit(array, indices_or_sections)

其中:

  • array - 需要拆分的输入数组。

  • indices_or_sections - 可以是整数,也可以是一维数组,其中包含指示如何拆分数组的索引。

示例

在此示例中,我们使用 numpy.hsplit() 函数将二维数组"arr"沿其列拆分为两个相等的部分。-

import numpy as np

# 二维数组
arr = np.array([[1, 2, 3, 4],
[5, 6, 7, 8]])

# 沿轴 1 分割成两等份
split_arr = np.hsplit(arr, 2)

print("原始数组:")
print(arr)
print("
沿轴 1 分割成两等份:")
for sub_arr in split_arr:
    print(sub_arr)

执行上述代码后,我们得到以下输出 -

原始数组:[[1 2 3 4]
[5 6 7 8]]

沿轴 1 分割成两等份:
[[1 2]
[5 6]]
[[3 4]
[7 8]]

垂直拆分

我们还可以使用 NumPy 中的 vsplit() 函数沿垂直轴(axis = 0)拆分二维数组。此函数将数组垂直划分为子数组,从而有效地分隔数据行。语法如下:

numpy.vsplit(array, indices_or_sections)

其中:

  • array - 需要拆分的输入数组。

  • indices_or_sections - 可以是整数,也可以是一维数组,其中包含指示如何拆分数组的索引。

示例

在下面的示例中,我们使用 numpy.vsplit() 函数将二维数组"arr"沿其行拆分为 3 个相等的部分 -

import numpy as np

# 二维数组
arr = np.array([[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9]])

# 沿轴 0 分割成 3 个相等的部分
split_arr = np.vsplit(arr, 3)

print("原始数组:")
print(arr)
print("
沿轴 0 分割成 3 个相等的部分:")
for sub_arr in split_arr:
    print(sub_arr)

输出结果如下 -

原始数组:
[[1 2 3]
[4 5 6]
[7 8 9]]

沿轴 0 分割成 3 个相等的部分:
[[1 2 3]]
[[4 5 6]]
[[7 8 9]]

深度分割

numpy.dsplit() 函数用于沿三维数组的第三个维度进行分割。这个维度通常被称为深度维度,对应axis=2。语法如下:-

numpy.dsplit(array, indices_or_sections)

示例

本例使用 numpy.dsplit() 函数将三维数组"arr"沿其第三维拆分为四个相等的部分 -

import numpy as np

# 三维数组示例
arr = np.arange(24).reshape((2, 3, 4))

# 沿轴 2(深度)拆分为四个相等的部分
split_arr = np.dsplit(arr, 4)

print("原始数组:")
print(arr)
print("
沿轴 2 拆分为四个相等的部分(深度):")
for sub_arr in split_arr:
    print(sub_arr)
    print()

结果如下 -

原始数组:
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

沿轴 2(深度)拆分为 4 个相等的部分:
[[[ 0]
  [ 4]
  [ 8]]
[[12]
  [16]
  [20]]]

[[[ 1]
  [ 5]
  [ 9]]
[[13]
  [17]
  [21]]]

[[[ 2]
  [ 6]
  [10]]
[[14]
  [18]
  [22]]]

[[[ 3]
  [ 7]
  [11]]
[[15]
  [19]
  [23]]]