Python 教程

Python 教程 Python 简介 Python 历史 Python 下载安装 Python 入门 Python 语法 Python 注释 Python 变量 Python 数据类型 Python 数值类型 Python 类型转换 Python 字符串 Python 布尔值 Python 运算符 Python 列表 Python 元组 Python 集合 Python 字典 Python If...Else Python While 循环 Python For 循环 Python 函数 Python Lambda Python 数组 Python 类和对象 Python 继承 Python 迭代 Python 作用域 Python 模块 Python 日期时间 Python 数学运算 Python JSON Python 正则表达式 Python PIP Python Try...Except Python 用户输入 Python 字符串格式化

Python 文件处理

Python 文件处理 Python 打开文件 Python 创建/写入文件 Python 删除文件

Python NumPy

NumPy 简介 NumPy 入门 NumPy 创建数组 NumPy 数组索引 NumPy 数组裁切 NumPy 数据类型 NumPy 副本 vs 视图 NumPy 数组形状 NumPy 数组重塑 NumPy 数组迭代 NumPy 数组连接 NumPy 数组拆分 NumPy 数组搜索 NumPy 数组排序 NumPy 数组过滤 NumPy 随机数 NumPy ufunc 通用函数

Python SciPy

SciPy 简介 SciPy 入门 SciPy 常量 SciPy 优化器 SciPy 稀疏数据 SciPy 图表 SciPy 空间数据 SciPy Matlab 数组 SciPy 插值 SciPy 统计显着性检验

Python 机器学习

Machine 机器学习入门 Machine 平均中位数模式 Machine 标准差 Machine 百分位数 Machine 数据分布 Machine 正态数据分布 Machine 散点图 Machine 线性回归 Machine 多项式回归 Machine 多元回归 Machine 缩放 Machine 训练/测试 Machine 决策树

Python MySQL

MySQL 入门 MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB 入门 MongoDB 创建数据库 MongoDB 创建集合 MongoDB 插入 MongoDB 查找 MongoDB 查询 MongoDB 排序 MongoDB 删除 MongoDB 删除集合 MongoDB 更新 MongoDB 限制

Python 参考手册

Python 参考手册 Python 内置函数 Python 字符串方法 Python 列表/数组方法 Python 字典方法 Python 元组方法 Python 集合方法 Python 文件方法 Python 关键字 Python 内置异常 Python 词汇表

Python 模块参考

Python 随机模块 Python 请求模块 Python 统计模块 Python 数学模块 Python cMath模块

Python 如何使用

Python 删除列表重复项 Python 反转字符串 Python 添加两个数字

Python 高级教程

Python 常用指引 将Python2代码迁移到Python3 将扩展模块移植到 Python3 Curses 编程 描述器使用指南 函数式编程指引 日志常用指引 日志操作手册 正则表达式使用指南 套接字编程指南 排序指南 Unicode 指南 如何利用urllib包获取网络资源 Argparse 教程 ipaddress 模块介绍 Argument Clinic 的用法 使用DTrace和SystemTap检测CPython 对象注解属性的最佳实践

Python 实例

Python 实例 Python 编译器 Python 练习 Python 测验 NumPy 测验 SciPy 测验


NumPy 数据类型

Python 中的数据类型

默认情况下,Python 拥有以下数据类型:

  • strings - 用于表示文本数据,文本用引号引起来。例如 "ABCD"。
  • integer - 用于表示整数。例如 -1, -2, -3。
  • float - 用于表示实数。例如 1.2, 42.42。
  • boolean - 用于表示 True 或 False。
  • complex - 用于表示复平面中的数字。例如 1.0 + 2.0j,1.5 + 2.5j。

NumPy 中的数据类型

NumPy 有一些额外的数据类型,并通过一个字符引用数据类型,例如 i 代表整数,u 代表无符号整数等。

以下是 NumPy 中所有数据类型的列表以及用于表示它们的字符。

  • i - 整数
  • b - 布尔
  • u - 无符号整数
  • f - 浮点
  • c - 复合浮点数
  • m - timedelta
  • M - datetime
  • O - 对象
  • S - 字符串
  • U - unicode 字符串
  • V - 固定的其他类型的内存块 ( void )

检查数组的数据类型

NumPy 数组对象有一个名为 dtype 的属性,该属性返回数组的数据类型:

实例

获取数组对象的数据类型:

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr.dtype)
亲自试一试 »

实例

获取包含字符串的数组的数据类型:

import numpy as np

arr = np.array(['apple', 'banana', 'cherry'])

print(arr.dtype)
亲自试一试 »

用已定义的数据类型创建数组

我们使用 array() 函数来创建数组,该函数可以使用可选参数:dtype,它允许我们定义数组元素的预期数据类型:

实例

用数据类型字符串创建数组:

import numpy as np

arr = np.array([1, 2, 3, 4], dtype='S')

print(arr)
print(arr.dtype)
亲自试一试 »

For i, u, f, S and U we can define size as well.

实例

创建数据类型为 4 字节整数的数组:

import numpy as np

arr = np.array([1, 2, 3, 4], dtype='i4')

print(arr)
print(arr.dtype)
亲自试一试 »

假如值无法转换会怎样?

如果给出了不能强制转换元素的类型,则 NumPy 将引发 ValueError。

ValueError: 在 Python 中,如果传递给函数的参数的类型是非预期或错误的,则会引发 ValueError。

实例

无法将非整数字符串(比如 'a')转换为整数(将引发错误):

import numpy as np

arr = np.array(['a', '2', '3'], dtype='i')
亲自试一试 »

转换已有数组的数据类型

更改现有数组的数据类型的最佳方法,是使用 astype() 方法复制该数组。

astype() 函数创建数组的副本,并允许您将数据类型指定为参数。

数据类型可以使用字符串指定,例如 'f' 表示浮点数,'i' 表示整数等。或者您也可以直接使用数据类型,例如 float 表示浮点数,int 表示整数。

实例

通过使用 'i' 作为参数值,将数据类型从浮点数更改为整数:

import numpy as np

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype('i')

print(newarr)
print(newarr.dtype)
亲自试一试 »

实例

通过使用 int 作为参数值,将数据类型从浮点数更改为整数:

import numpy as np

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype(int)

print(newarr)
print(newarr.dtype)
亲自试一试 »

实例

将数据类型从整数更改为布尔值:

import numpy as np

arr = np.array([1, 0, 3])

newarr = arr.astype(bool)

print(newarr)
print(newarr.dtype)
亲自试一试 »