Python 排序指南
- 作者
Andrew Dalke 和 Raymond Hettinger
- 发布版本
0.1
摘要
Python 列表有一个内置的 list.sort()
方法可以直接修改列表。还有一个 sorted()
内置函数,它会从一个可迭代对象构建一个新的排序列表。
在本文档中,我们将探索使用Python对数据进行排序的各种技术。
基本排序
简单的升序排序非常简单:只需调用 sorted()
函数。它返回一个新的排序后列表:
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
你也可以使用 list.sort()
方法,它会直接修改原列表(并返回 None
以避免混淆),通常来说它不如 sorted()
方便 ——— 但如果你不需要原列表,它会更有效率。
>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]
另外一个区别是, list.sort()
方法只是为列表定义的,而 sorted()
函数可以接受任何可迭代对象。
>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]
关键函数
list.sort()
和 sorted()
都有一个 key 形参用来指定在进行比较前要在每个列表元素上调用的函数(或其他可调用对象)。
例如,下面是一个不区分大小写的字符串比较:
>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
key 形参的值应该是个函数(或其他可调用对象),它接受一个参数并返回一个用于排序的键。 这种机制速度很快,因为对于每个输入记录只会调用一次键函数。
一种常见的模式是使用对象的一些索引作为键对复杂对象进行排序。例如:
>>> student_tuples = [
... ('john', 'A', 15),
... ('jane', 'B', 12),
... ('dave', 'B', 10),
... ]
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
同样的技术也适用于具有命名属性的对象。例如:
>>> class Student:
... def __init__(self, name, grade, age):
... self.name = name
... self.grade = grade
... self.age = age
... def __repr__(self):
... return repr((self.name, self.grade, self.age))
>>> student_objects = [
... Student('john', 'A', 15),
... Student('jane', 'B', 12),
... Student('dave', 'B', 10),
... ]
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator 模块函数
上面显示的键函数模式非常常见,因此 Python 提供了便利功能,使访问器功能更容易,更快捷。 operator
模块有 itemgetter()
、 attrgetter()
和 methodcaller()
函数。
使用这些函数,上述示例变得更简单,更快捷:
>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator 模块功能允许多级排序。 例如,按 grade 排序,然后按 age 排序:
>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
升序和降序
list.sort()
和 sorted()
接受布尔值的 reverse 参数。这用于标记降序排序。 例如,要以反向 age 顺序获取学生数据:
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
排序稳定性和排序复杂度
排序保证是 稳定 的。 这意味着当多个记录具有相同的键值时,将保留其原始顺序。
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
注意 blue 的两个记录如何保留它们的原始顺序,以便 ('blue', 1)
保证在 ('blue', 2)
之前。
这个美妙的属性允许你在一系列排序步骤中构建复杂的排序。例如,要按 grade 降序然后 age 升序对学生数据进行排序,请先 age 排序,然后再使用 grade 排序:
>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
这可以被抽象为一个包装函数,该函数能接受一个列表以及字段和顺序的元组,以对它们进行多重排序。
>>> def multisort(xs, specs):
... for key, reverse in reversed(specs):
... xs.sort(key=attrgetter(key), reverse=reverse)
... return xs
>>> multisort(list(student_objects), (('grade', True), ('age', False)))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Python 中使用的 Timsort 算法可以有效地进行多种排序,因为它可以利用数据集中已存在的任何排序。
Decorate-Sort-Undecorate
这个三个步骤被称为 Decorate-Sort-Undecorate :
首先,初始列表使用控制排序顺序的新值进行修饰。
然后,装饰列表已排序。
最后,删除装饰,创建一个仅包含新排序中初始值的列表。
例如,要使用DSU方法按 grade 对学生数据进行排序:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)] >>> decorated.sort() >>> [student for grade, i, student in decorated] # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
这方法语有效是因为元组按字典顺序进行比较,先比较第一项;如果它们相同则比较第二个项目,依此类推。
不一定在所有情况下都要在装饰列表中包含索引 i ,但包含它有两个好处:
排序是稳定的——如果两个项具有相同的键,它们的顺序将保留在排序列表中。
原始项目不必具有可比性,因为装饰元组的排序最多由前两项决定。 因此,例如原始列表可能包含无法直接排序的复数。
这个方法的另一个名字是 Randal L. Schwartz 在 Perl 程序员中推广的 Schwartzian transform。
既然 Python 排序提供了键函数,那么通常不需要这种技术。
比较函数
与返回排序绝对值的键函数不同,比较函数计算两个输入的相对顺序。
例如,天平比较两个样本,给出相对顺序:更轻,相等,或更重。
同样,cmp(a, b)
之类的比较函数将在小于时返回负值,在输入相等时返回零,或在大于时返回正值。
从其他语言翻译算法时,经常会遇到比较函数。 此外,一些库提供比较功能作为其 API 的一部分。 例如,locale.strcoll()
是一个比较函数。
为了适应这些情况,Python 提供了 functools.cmp_to_key
来包装比较函数,使其可以用作键函数:
sorted(words, key=cmp_to_key(strcoll)) # locale-aware sort order
Odds 和 Ends
对于区域感知排序,将
locale.strxfrm()
用于键函数或将locale.strcoll()
用于比较函数。 这是必要的,因为"字母"排序顺序可能因文化而异,即使底层字母表相同。reverse 参数仍然保持排序稳定性(因此具有相等键的记录保留原始顺序)。 有趣的是,通过使用内置的
reversed()
函数两次,可以在没有参数的情况下模拟该效果:>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] >>> standard_way = sorted(data, key=itemgetter(0), reverse=True) >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0)))) >>> assert standard_way == double_reversed >>> standard_way [('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]
在对两个对象进行比较时,排序例程使用
<
。因此,通过定义一个__lt__()
方法,很容易为一个类添加一个标准的排序顺序。>>> Student.__lt__ = lambda self, other: self.age < other.age >>> sorted(student_objects) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
然而,请注意,如果
__gt__()
没有实现,<
可以退回到使用__lt__()
(见object.__lt__()
)。键函数不需要直接依赖于被排序的对象。键函数还可以访问外部资源。例如,如果学生成绩存储在字典中,则可以使用它们对单独的学生姓名列表进行排序:
>>> students = ['dave', 'john', 'jane'] >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'} >>> sorted(students, key=newgrades.__getitem__) ['jane', 'dave', 'john']