Python 教程

Python 教程 Python 简介 Python 历史 Python 下载安装 Python 入门 Python 语法 Python 注释 Python 变量 Python 数据类型 Python 数值类型 Python 类型转换 Python 字符串 Python 布尔值 Python 运算符 Python 列表 Python 元组 Python 集合 Python 字典 Python If...Else Python While 循环 Python For 循环 Python 函数 Python Lambda Python 数组 Python 类和对象 Python 继承 Python 迭代 Python 作用域 Python 模块 Python 日期时间 Python 数学运算 Python JSON Python 正则表达式 Python PIP Python Try...Except Python 用户输入 Python 字符串格式化

Python 文件处理

Python 文件处理 Python 打开文件 Python 创建/写入文件 Python 删除文件

Python NumPy

NumPy 简介 NumPy 入门 NumPy 创建数组 NumPy 数组索引 NumPy 数组裁切 NumPy 数据类型 NumPy 副本 vs 视图 NumPy 数组形状 NumPy 数组重塑 NumPy 数组迭代 NumPy 数组连接 NumPy 数组拆分 NumPy 数组搜索 NumPy 数组排序 NumPy 数组过滤 NumPy 随机数 NumPy ufunc 通用函数

Python SciPy

SciPy 简介 SciPy 入门 SciPy 常量 SciPy 优化器 SciPy 稀疏数据 SciPy 图表 SciPy 空间数据 SciPy Matlab 数组 SciPy 插值 SciPy 统计显着性检验

Python 机器学习

Machine 机器学习入门 Machine 平均中位数模式 Machine 标准差 Machine 百分位数 Machine 数据分布 Machine 正态数据分布 Machine 散点图 Machine 线性回归 Machine 多项式回归 Machine 多元回归 Machine 缩放 Machine 训练/测试 Machine 决策树

Python MySQL

MySQL 入门 MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB 入门 MongoDB 创建数据库 MongoDB 创建集合 MongoDB 插入 MongoDB 查找 MongoDB 查询 MongoDB 排序 MongoDB 删除 MongoDB 删除集合 MongoDB 更新 MongoDB 限制

Python 参考手册

Python 参考手册 Python 内置函数 Python 字符串方法 Python 列表/数组方法 Python 字典方法 Python 元组方法 Python 集合方法 Python 文件方法 Python 关键字 Python 内置异常 Python 词汇表

Python 模块参考

Python 随机模块 Python 请求模块 Python 统计模块 Python 数学模块 Python cMath模块

Python 如何使用

Python 删除列表重复项 Python 反转字符串 Python 添加两个数字

Python 高级教程

Python 常用指引 将Python2代码迁移到Python3 将扩展模块移植到 Python3 Curses 编程 描述器使用指南 函数式编程指引 日志常用指引 日志操作手册 正则表达式使用指南 套接字编程指南 排序指南 Unicode 指南 如何利用urllib包获取网络资源 Argparse 教程 ipaddress 模块介绍 Argument Clinic 的用法 使用DTrace和SystemTap检测CPython 对象注解属性的最佳实践

Python 实例

Python 实例 Python 编译器 Python 练习 Python 测验 NumPy 测验 SciPy 测验


NumPy 数组迭代

数组迭代

迭代意味着逐一遍历元素。

当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。

实例

迭代以下一维数组的元素:

import numpy as np

arr = np.array([1, 2, 3])

for x in arr:
  print(x)
亲自试一试 »

迭代 2-D 数组

在 2-D 数组中,它将遍历所有行。

实例

迭代以下二维数组的元素:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:
  print(x)
亲自试一试 »

如果我们迭代一个 n-D 数组,它将逐一遍历第 n-1 维。

如需返回实际值、标量,我们必须迭代每个维中的数组。

实例

迭代 2-D 数组的每个标量元素:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:
  for y in x:
    print(y)
亲自试一试 »

迭代 3-D 数组

在 3-D 数组中,它将遍历所有 2-D 数组。

实例

迭代以下 3-D 数组的元素:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:
  print(x)
亲自试一试 »

要返回实际值、标量,我们必须迭代每个维中的数组。

实例

迭代到标量:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:
  for y in x:
    for z in y:
      print(z)
亲自试一试 »

使用 nditer() 迭代数组

函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。

迭代每个标量元素

在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。

实例

遍历以下 3-D 数组:

import numpy as np

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

for x in np.nditer(arr):
  print(x)
亲自试一试 »

迭代不同数据类型的数组

我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。

NumPy 不会就地更改元素的数据类型(元素位于数组中),因此它需要一些其他空间来执行此操作,该额外空间称为 buffer,为了在 nditer() 中启用它,我们传参 flags=['buffered']

实例

以字符串形式遍历数组:

import numpy as np

arr = np.array([1, 2, 3])

for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
  print(x)
亲自试一试 »

以不同的步长迭代

我们可以使用过滤,然后进行迭代。

实例

每遍历 2D 数组的一个标量元素,跳过 1 个元素:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for x in np.nditer(arr[:, ::2]):
  print(x)
亲自试一试 »

使用 ndenumerate() 进行枚举迭代

枚举是指逐一提及事物的序号。

有时,我们在迭代时需要元素的相应索引,对于这些用例,可以使用 ndenumerate() 方法。

实例

枚举以下 1D 数组元素:

import numpy as np

arr = np.array([1, 2, 3])

for idx, x in np.ndenumerate(arr):
  print(idx, x)
亲自试一试 »

实例

枚举以下 2D 数组元素:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for idx, x in np.ndenumerate(arr):
  print(idx, x)
亲自试一试 »