数据结构和算法

DSA - 主页 DSA - 概述 DSA - 环境设置 DSA - 算法基础 DSA - 渐近分析

数据结构

DSA - 数据结构基础 DSA - 数据结构和类型 DSA - 数组数据结构

链接列表

DSA - 链接列表数据结构 DSA - 双向链接列表数据结构 DSA - 循环链表数据结构

堆栈 &队列

DSA - 堆栈数据结构 DSA - 表达式解析 DSA - 队列数据结构

搜索算法

DSA - 搜索算法 DSA - 线性搜索算法 DSA - 二分搜索算法 DSA - 插值搜索 DSA - 跳跃搜索算法 DSA - 指数搜索 DSA - 斐波那契搜索 DSA - 子列表搜索 DSA - 哈希表

排序算法

DSA - 排序算法 DSA - 冒泡排序算法 DSA - 插入排序算法 DSA - 选择排序算法 DSA - 归并排序算法 DSA - 希尔排序算法 DSA - 堆排序 DSA - 桶排序算法 DSA - 计数排序算法 DSA - 基数排序算法 DSA - 快速排序算法

图形数据结构

DSA - 图形数据结构 DSA - 深度优先遍历 DSA - 广度优先遍历 DSA - 生成树

树数据结构

DSA - 树数据结构 DSA - 树遍历 DSA - 二叉搜索树 DSA - AVL 树 DSA - 红黑树 DSA - B树 DSA - B+ 树 DSA - 伸展树 DSA - 尝试 DSA - 堆数据结构

递归

DSA - 递归算法 DSA - 使用递归的汉诺塔 DSA - 使用递归的斐波那契数列

分而治之

DSA - 分而治之 DSA - 最大最小问题 DSA - 施特拉森矩阵乘法 DSA - Karatsuba 算法

贪婪算法

DSA - 贪婪算法 DSA - 旅行商问题(贪婪方法) DSA - Prim 最小生成树 DSA - Kruskal 最小生成树 DSA - Dijkstra 最短路径算法 DSA - 地图着色算法 DSA - 分数背包问题 DSA - 作业排序截止日期 DSA - 最佳合并模式算法

动态规划

DSA - 动态规划 DSA - 矩阵链乘法 DSA - Floyd Warshall 算法 DSA - 0-1 背包问题 DSA - 最长公共子序列算法 DSA - 旅行商问题(动态方法)

近似算法

DSA - 近似算法 DSA - 顶点覆盖算法 DSA - 集合覆盖问题 DSA - 旅行商问题(近似方法)

随机算法

DSA - 随机算法 DSA - 随机快速排序算法 DSA - Karger 最小割算法 DSA - Fisher-Yates 洗牌算法

DSA 有用资源

DSA - 问答 DSA - 快速指南 DSA - 有用资源 DSA - 讨论


Queue Program In C

We shall see the queue implementation in C programming language here. To learn the theory aspect of queue, click on visit previous page.

Queue Implementation in C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>

#define MAX 6

int intArray[MAX];
int front = 0;
int rear = -1;
int itemCount = 0;

int peek() {
   return intArray[front];
}

bool isEmpty() {
   return itemCount == 0;
}

bool isFull() {
   return itemCount == MAX;
}

int size() {
   return itemCount;
}  

void insert(int data) {

   if(!isFull()) {
	
      if(rear == MAX-1) {
         rear = -1;            
      }       

      intArray[++rear] = data;
      itemCount++;
   }
}

int removeData() {
   int data = intArray[front++];
	
   if(front == MAX) {
      front = 0;
   }
	
   itemCount--;
   return data;  
}

int main() {
   /* insert 5 items */
   insert(3);
   insert(5);
   insert(9);
   insert(1);
   insert(12);

   // front : 0
   // rear  : 4
   // ------------------
   // index : 0 1 2 3 4 
   // ------------------
   // queue : 3 5 9 1 12
   insert(15);

   // front : 0
   // rear  : 5
   // ---------------------
   // index : 0 1 2 3 4  5 
   // ---------------------
   // queue : 3 5 9 1 12 15
	
   if(isFull()) {
      printf("Queue is full!
");   
   }

   // remove one item 
   int num = removeData();
	
   printf("Element removed: %d
",num);
   // front : 1
   // rear  : 5
   // -------------------
   // index : 1 2 3 4  5
   // -------------------
   // queue : 5 9 1 12 15

   // insert more items
   insert(16);

   // front : 1
   // rear  : -1
   // ----------------------
   // index : 0  1 2 3 4  5
   // ----------------------
   // queue : 16 5 9 1 12 15

   // As queue is full, elements will not be inserted. 
   insert(17);
   insert(18);

   // ----------------------
   // index : 0  1 2 3 4  5
   // ----------------------
   // queue : 16 5 9 1 12 15
   printf("Element at front: %d
",peek());

   printf("----------------------
");
   printf("index : 5 4 3 2  1  0
");
   printf("----------------------
");
   printf("Queue:  ");
	
   while(!isEmpty()) {
      int n = removeData();           
      printf("%d ",n);
   }   
}

Output

If we compile and run the above program, it will produce the following result −

Queue is full!
Element removed: 3
Element at front: 5
----------------------
index : 5 4 3 2 1 0
----------------------
Queue: 5 9 1 12 15 16
dsa_queue.htm