数据结构和算法

DSA - 主页 DSA - 概述 DSA - 环境设置 DSA - 算法基础 DSA - 渐近分析

数据结构

DSA - 数据结构基础 DSA - 数据结构和类型 DSA - 数组数据结构

链接列表

DSA - 链接列表数据结构 DSA - 双向链接列表数据结构 DSA - 循环链表数据结构

堆栈 &队列

DSA - 堆栈数据结构 DSA - 表达式解析 DSA - 队列数据结构

搜索算法

DSA - 搜索算法 DSA - 线性搜索算法 DSA - 二分搜索算法 DSA - 插值搜索 DSA - 跳跃搜索算法 DSA - 指数搜索 DSA - 斐波那契搜索 DSA - 子列表搜索 DSA - 哈希表

排序算法

DSA - 排序算法 DSA - 冒泡排序算法 DSA - 插入排序算法 DSA - 选择排序算法 DSA - 归并排序算法 DSA - 希尔排序算法 DSA - 堆排序 DSA - 桶排序算法 DSA - 计数排序算法 DSA - 基数排序算法 DSA - 快速排序算法

图形数据结构

DSA - 图形数据结构 DSA - 深度优先遍历 DSA - 广度优先遍历 DSA - 生成树

树数据结构

DSA - 树数据结构 DSA - 树遍历 DSA - 二叉搜索树 DSA - AVL 树 DSA - 红黑树 DSA - B树 DSA - B+ 树 DSA - 伸展树 DSA - 尝试 DSA - 堆数据结构

递归

DSA - 递归算法 DSA - 使用递归的汉诺塔 DSA - 使用递归的斐波那契数列

分而治之

DSA - 分而治之 DSA - 最大最小问题 DSA - 施特拉森矩阵乘法 DSA - Karatsuba 算法

贪婪算法

DSA - 贪婪算法 DSA - 旅行商问题(贪婪方法) DSA - Prim 最小生成树 DSA - Kruskal 最小生成树 DSA - Dijkstra 最短路径算法 DSA - 地图着色算法 DSA - 分数背包问题 DSA - 作业排序截止日期 DSA - 最佳合并模式算法

动态规划

DSA - 动态规划 DSA - 矩阵链乘法 DSA - Floyd Warshall 算法 DSA - 0-1 背包问题 DSA - 最长公共子序列算法 DSA - 旅行商问题(动态方法)

近似算法

DSA - 近似算法 DSA - 顶点覆盖算法 DSA - 集合覆盖问题 DSA - 旅行商问题(近似方法)

随机算法

DSA - 随机算法 DSA - 随机快速排序算法 DSA - Karger 最小割算法 DSA - Fisher-Yates 洗牌算法

DSA 有用资源

DSA - 问答 DSA - 快速指南 DSA - 有用资源 DSA - 讨论


Greedy Algorithms


Among all the algorithmic approaches, the simplest and straightforward approach is the Greedy method. In this approach, the decision is taken on the basis of current available information without worrying about the effect of the current decision in future.

Greedy algorithms build a solution part by part, choosing the next part in such a way, that it gives an immediate benefit. This approach never reconsiders the choices taken previously. This approach is mainly used to solve optimization problems. Greedy method is easy to implement and quite efficient in most of the cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm based on heuristic that follows local optimal choice at each step with the hope of finding global optimal solution.

In many problems, it does not produce an optimal solution though it gives an approximate (near optimal) solution in a reasonable time.

Components of Greedy Algorithm

Greedy algorithms have the following five components −

  • A candidate set − A solution is created from this set.

  • A selection function − Used to choose the best candidate to be added to the solution.

  • A feasibility function − Used to determine whether a candidate can be used to contribute to the solution.

  • An objective function − Used to assign a value to a solution or a partial solution.

  • A solution function − Used to indicate whether a complete solution has been reached.

Areas of Application

Greedy approach is used to solve many problems, such as

  • Finding the shortest path between two vertices using Dijkstra's algorithm.

  • Finding the minimal spanning tree in a graph using Prim's /Kruskal's algorithm, etc.

Counting Coins Problem

The Counting Coins problem is to count to a desired value by choosing the least possible coins and the greedy approach forces the algorithm to pick the largest possible coin. If we are provided coins of 1, 2, 5 and 10 and we are asked to count 18 then the greedy procedure will be −

  • 1 − Select one 10 coin, the remaining count is 8

  • 2 − Then select one 5 coin, the remaining count is 3

  • 3 − Then select one 2 coin, the remaining count is 1

  • 4 − And finally, the selection of one 1 coins solves the problem

Though, it seems to be working fine, for this count we need to pick only 4 coins. But if we slightly change the problem then the same approach may not be able to produce the same optimum result.

For the currency system, where we have coins of 1, 7, 10 value, counting coins for value 18 will be absolutely optimum but for count like 15, it may use more coins than necessary. For example, the greedy approach will use 10 + 1 + 1 + 1 + 1 + 1, total 6 coins. Whereas the same problem could be solved by using only 3 coins (7 + 7 + 1)

Hence, we may conclude that the greedy approach picks an immediate optimized solution and may fail where global optimization is a major concern.

Where Greedy Approach Fails

In many problems, Greedy algorithm fails to find an optimal solution, moreover it may produce a worst solution. Problems like Travelling Salesman and Knapsack cannot be solved using this approach.

Examples of Greedy Algorithm

Most networking algorithms use the greedy approach. Here is a list of few of them −

We will discuss these examples elaborately in the further chapters of this tutorial.