PyTorch - 实现第一个神经网络
PyTorch 包含创建和实现神经网络的特殊功能。 在本章中,我们将创建一个简单的神经网络,其中一个隐藏层开发一个输出单元。
我们将使用以下步骤使用 PyTorch 实现第一个神经网络 −
步骤 1
首先,我们需要使用以下命令导入 PyTorch 库 −
import torch import torch.nn as nn
步骤 2
定义所有层和批量大小以开始执行神经网络,如下所示 −
# Defining input size, hidden layer size, output size and batch size respectively n_in, n_h, n_out, batch_size = 10, 5, 1, 10
步骤 3
由于神经网络包含输入数据的组合以获得相应的输出数据,我们将遵循以下相同的程序 −
# Create dummy input and target tensors (data) x = torch.randn(batch_size, n_in) y = torch.tensor([[1.0], [0.0], [0.0], [1.0], [1.0], [1.0], [0.0], [0.0], [1.0], [1.0]])
步骤 4
借助内置函数创建顺序模型。 使用下面的代码行,创建一个顺序模型 −
# Create a model model = nn.Sequential(nn.Linear(n_in, n_h), nn.ReLU(), nn.Linear(n_h, n_out), nn.Sigmoid())
步骤 5
在梯度下降优化器的帮助下构造损失函数,如下所示 −
Construct the loss function criterion = torch.nn.MSELoss() # Construct the optimizer (Stochastic Gradient Descent in this case) optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
步骤 6
使用给定的代码行使用迭代循环实现梯度下降模型 −
# Gradient Descent for epoch in range(50): # Forward pass: Compute predicted y by passing x to the model y_pred = model(x) # Compute and print loss loss = criterion(y_pred, y) print('epoch: ', epoch,' loss: ', loss.item()) # Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() # perform a backward pass (backpropagation) loss.backward() # Update the parameters optimizer.step()
步骤 7
生成的输出如下 −
epoch: 0 loss: 0.2545787990093231 epoch: 1 loss: 0.2545052170753479 epoch: 2 loss: 0.254431813955307 epoch: 3 loss: 0.25435858964920044 epoch: 4 loss: 0.2542854845523834 epoch: 5 loss: 0.25421255826950073 epoch: 6 loss: 0.25413978099823 epoch: 7 loss: 0.25406715273857117 epoch: 8 loss: 0.2539947032928467 epoch: 9 loss: 0.25392240285873413 epoch: 10 loss: 0.25385022163391113 epoch: 11 loss: 0.25377824902534485 epoch: 12 loss: 0.2537063956260681 epoch: 13 loss: 0.2536346912384033 epoch: 14 loss: 0.25356316566467285 epoch: 15 loss: 0.25349172949790955 epoch: 16 loss: 0.25342053174972534 epoch: 17 loss: 0.2533493936061859 epoch: 18 loss: 0.2532784342765808 epoch: 19 loss: 0.25320762395858765 epoch: 20 loss: 0.2531369626522064 epoch: 21 loss: 0.25306645035743713 epoch: 22 loss: 0.252996027469635 epoch: 23 loss: 0.2529257833957672 epoch: 24 loss: 0.25285571813583374 epoch: 25 loss: 0.25278574228286743 epoch: 26 loss: 0.25271597504615784 epoch: 27 loss: 0.25264623761177063 epoch: 28 loss: 0.25257670879364014 epoch: 29 loss: 0.2525072991847992 epoch: 30 loss: 0.2524380087852478 epoch: 31 loss: 0.2523689270019531 epoch: 32 loss: 0.25229987502098083 epoch: 33 loss: 0.25223103165626526 epoch: 34 loss: 0.25216227769851685 epoch: 35 loss: 0.252093642950058 epoch: 36 loss: 0.25202515721321106 epoch: 37 loss: 0.2519568204879761 epoch: 38 loss: 0.251888632774353 epoch: 39 loss: 0.25182053446769714 epoch: 40 loss: 0.2517525553703308 epoch: 41 loss: 0.2516847252845764 epoch: 42 loss: 0.2516169846057892 epoch: 43 loss: 0.2515493929386139 epoch: 44 loss: 0.25148195028305054 epoch: 45 loss: 0.25141456723213196 epoch: 46 loss: 0.2513473629951477 epoch: 47 loss: 0.2512802183628082 epoch: 48 loss: 0.2512132525444031 epoch: 49 loss: 0.2511464059352875