Python - 词干提取和词形还原
在自然语言处理领域,我们遇到两个或多个单词有共同词根的情况。例如,三个单词 - 同意、同意和同意的具有相同的词根。涉及这些单词中的任何一个的搜索都应将它们视为同一个词,即词根。因此,将所有单词链接到它们的词根变得至关重要。NLTK 库有方法可以进行这种链接并提供显示词根的输出。
以下程序使用 Porter 词干提取算法进行词干提取。
import nltk from nltk.stem.porter import PorterStemmer porter_stemmer = PorterStemmer() word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms" # First Word tokenization nltk_tokens = nltk.word_tokenize(word_data) #Next find the roots of the word for w in nltk_tokens: print "Actual: %s Stem: %s" % (w,porter_stemmer.stem(w))
当我们执行上述代码时,它会产生以下结果。
Actual: It Stem: It Actual: originated Stem: origin Actual: from Stem: from Actual: the Stem: the Actual: idea Stem: idea Actual: that Stem: that Actual: there Stem: there Actual: are Stem: are Actual: readers Stem: reader Actual: who Stem: who Actual: prefer Stem: prefer Actual: learning Stem: learn Actual: new Stem: new Actual: skills Stem: skill Actual: from Stem: from Actual: the Stem: the Actual: comforts Stem: comfort Actual: of Stem: of Actual: their Stem: their Actual: drawing Stem: draw Actual: rooms Stem: room
词形还原与词干提取类似,但它为单词提供了上下文。因此,它更进一步,将具有相似含义的单词链接到一个单词。例如,如果一个段落中有汽车、火车和汽车等单词,那么它会将它们全部链接到汽车。在下面的程序中,我们使用 WordNet 词汇数据库进行词形还原。
import nltk from nltk.stem import WordNetLemmatizer wordnet_lemmatizer = WordNetLemmatizer() word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms" nltk_tokens = nltk.word_tokenize(word_data) for w in nltk_tokens: print "Actual: %s Lemma: %s" % (w,wordnet_lemmatizer.lemmatize(w))
当我们执行上述代码时,它会产生以下结果。
Actual: It Lemma: It Actual: originated Lemma: originated Actual: from Lemma: from Actual: the Lemma: the Actual: idea Lemma: idea Actual: that Lemma: that Actual: there Lemma: there Actual: are Lemma: are Actual: readers Lemma: reader Actual: who Lemma: who Actual: prefer Lemma: prefer Actual: learning Lemma: learning Actual: new Lemma: new Actual: skills Lemma: skill Actual: from Lemma: from Actual: the Lemma: the Actual: comforts Lemma: comfort Actual: of Lemma: of Actual: their Lemma: their Actual: drawing Lemma: drawing Actual: rooms Lemma: room