敏捷数据科学 - 提高预测性能
在本章中,我们将重点构建一个模型,该模型有助于预测学生的表现,其中包含许多属性。 重点展示学生考试不及格结果。
流程
考核目标值为G3。 该值可以被分类并进一步分类为失败和成功。 如果G3值大于或等于10,则学生通过考试。
示例
考虑以下示例,其中执行代码来预测学生的表现 −
import pandas as pd """ Read data file as DataFrame """ df = pd.read_csv("student-mat.csv", sep=";") """ Import ML helpers """ from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV, cross_val_score from sklearn.pipeline import Pipeline from sklearn.feature_selection import SelectKBest, chi2 from sklearn.svm import LinearSVC # Support Vector Machine Classifier model """ Split Data into Training and Testing Sets """ def split_data(X, Y): return train_test_split(X, Y, test_size=0.2, random_state=17) """ Confusion Matrix """ def confuse(y_true, y_pred): cm = confusion_matrix(y_true=y_true, y_pred=y_pred) # print(" Confusion Matrix: ", cm) fpr(cm) ffr(cm) """ False Pass Rate """ def fpr(confusion_matrix): fp = confusion_matrix[0][1] tf = confusion_matrix[0][0] rate = float(fp) / (fp + tf) print("False Pass Rate: ", rate) """ False Fail Rate """ def ffr(confusion_matrix): ff = confusion_matrix[1][0] tp = confusion_matrix[1][1] rate = float(ff) / (ff + tp) print("False Fail Rate: ", rate) return rate """ Train Model and Print Score """ def train_and_score(X, y): X_train, X_test, y_train, y_test = split_data(X, y) clf = Pipeline([ ('reduce_dim', SelectKBest(chi2, k=2)), ('train', LinearSVC(C=100)) ]) scores = cross_val_score(clf, X_train, y_train, cv=5, n_jobs=2) print("Mean Model Accuracy:", np.array(scores).mean()) clf.fit(X_train, y_train) confuse(y_test, clf.predict(X_test)) print() """ Main Program """ def main(): print(" Student Performance Prediction") # For each feature, encode to categorical values class_le = LabelEncoder() for column in df[["school", "sex", "address", "famsize", "Pstatus", "Mjob", "Fjob", "reason", "guardian", "schoolsup", "famsup", "paid", "activities", "nursery", "higher", "internet", "romantic"]].columns: df[column] = class_le.fit_transform(df[column].values) # Encode G1, G2, G3 as pass or fail binary values for i, row in df.iterrows(): if row["G1"] >= 10: df["G1"][i] = 1 else: df["G1"][i] = 0 if row["G2"] >= 10: df["G2"][i] = 1 else: df["G2"][i] = 0 if row["G3"] >= 10: df["G3"][i] = 1 else: df["G3"][i] = 0 # Target values are G3 y = df.pop("G3") # Feature set is remaining features X = df print(" Model Accuracy Knowing G1 & G2 Scores") print("=====================================") train_and_score(X, y) # Remove grade report 2 X.drop(["G2"], axis = 1, inplace=True) print(" Model Accuracy Knowing Only G1 Score") print("=====================================") train_and_score(X, y) # Remove grade report 1 X.drop(["G1"], axis=1, inplace=True) print(" Model Accuracy Without Knowing Scores") print("=====================================") train_and_score(X, y) main()
输出
上面的代码生成的输出如下所示
仅参考一个变量来处理预测。 参考一个变量,学生成绩预测如下:−