OpenCV Python - 图像与Pyramids的融合

图像的不连续性可以通过使用图像 Pyramids 来最小化。 这会产生无缝的混合图像。

采取以下步骤来实现最终结果 −

首先加载图像并为两者找到 Gaussian Pyramids。 相同的程序如下 −

import cv2
import numpy as np,sys

kalam = cv2.imread('kalam.jpg')
einst = cv2.imread('einstein.jpg')
### generate Gaussian pyramid for first
G = kalam.copy()
gpk = [G]
for i in range(6):
   G = cv2.pyrDown(G)
   gpk.append(G)
# generate Gaussian pyramid for second
G = einst.copy()
gpe = [G]
for i in range(6):
   G = cv2.pyrDown(G)
   gpe.append(G)

从 Gaussian Pyramids 中,获得相应的 Laplacian Pyramids。 相同的程序如下 −

# generate Laplacian Pyramid for first
lpk = [gpk[5]]
for i in range(5,0,-1):
   GE = cv2.pyrUp(gpk[i])
   L = cv2.subtract(gpk[i-1],GE)
   lpk.append(L)

# generate Laplacian Pyramid for second
lpe = [gpe[5]]
for i in range(5,0,-1):
   GE = cv2.pyrUp(gpe[i])
   L = cv2.subtract(gpe[i-1],GE)
   lpe.append(L)

然后,在每一层 Pyramids 中将第一张图像的左半部分与第二张图像的右半部分连接起来。 相同的程序如下 −

# Now add left and right halves of images in each level
LS = []
for la,lb in zip(lpk,lpe):
   rows,cols,dpt = la.shape
   ls = np.hstack((la[:,0:int(cols/2)], lb[:,int(cols/2):]))
   LS.append(ls)

最后,从这个联合 Pyramids 重建图像。 下面给出了相同的程序 −

ls_ = LS[0]
for i in range(1,6):
   ls_ = cv2.pyrUp(ls_)
   ls_ = cv2.add(ls_, LS[i])
   cv2.imshow('RESULT',ls_)

输出

混合后的结果应该是这样的 −

混合 Pyramids