人工神经网络 - 遗传算法
自然界一直是全人类的灵感源泉。遗传算法 (GA) 是基于自然选择和遗传学概念的搜索算法。GA 是计算的一个更大的分支,称为进化计算的一个子集。
GA 由密歇根大学的 John Holland 及其学生和同事(最著名的是 David E. Goldberg)开发,此后已在各种优化问题上进行了尝试,并取得了很高的成功率。
在 GA 中,我们有一个针对给定问题的可能解决方案池或群体。然后,这些解决方案会进行重组和突变(就像在自然遗传学中一样),产生新的子代,并且该过程会在各个世代中重复。每个个体(或候选解决方案)都被分配一个适应度值(基于其目标函数值),适应度更高的个体有更高的机会交配并产生更多"适应度"的个体。这符合达尔文的"适者生存"理论。
通过这种方式,我们不断"进化"出更好的个体或解决方案,直到达到停止标准。
遗传算法本质上具有足够的随机性,但它们的性能比随机局部搜索(我们只是尝试各种随机解决方案,跟踪迄今为止最好的解决方案)好得多,因为它们也利用了历史信息。
GA 的优势
GA 具有多种优势,这些优势使它们非常受欢迎。这些包括 −
不需要任何衍生信息(对于许多实际问题来说,这些信息可能不可用)。
与传统方法相比,速度更快、效率更高。
具有非常好的并行能力。
优化连续和离散函数以及多目标问题。
提供"良好"解决方案列表,而不仅仅是单一解决方案。
始终获得问题的答案,并且随着时间的推移会变得更好。
当搜索空间非常大并且涉及大量参数时很有用。
GA 的局限性
与任何技术一样,GA 也存在一些局限性。这些包括 −
GA 并不适合所有问题,尤其是那些简单且有衍生信息的问题。
适应度值被重复计算,对于某些问题来说,这可能在计算上很昂贵。
由于是随机的,因此无法保证解决方案的最优性或质量。
如果实施不当,GA 可能无法收敛到最优解。
GA – 动机
遗传算法能够"足够快"地提供"足够好"的解决方案。这使得 Gas 在解决优化问题方面具有吸引力。需要 GA 的原因如下 −
解决难题
在计算机科学中,存在大量NP-Hard问题。这本质上意味着,即使是最强大的计算系统也需要很长时间(甚至数年!)才能解决该问题。在这种情况下,GA 被证明是一种有效的工具,可以在短时间内提供可用的近乎最优的解决方案。
基于梯度的方法失败
传统的基于微积分的方法从随机点开始,沿着梯度方向移动,直到到达山顶。这种技术非常有效,并且对于单峰目标函数(如线性回归中的成本函数)非常有效。然而,在大多数现实世界中,我们有一个非常复杂的问题,称为地形,由许多山峰和山谷组成,这导致此类方法失败,因为它们存在陷入局部最优的固有倾向,如下图所示。
快速获得良好的解决方案
一些困难的问题,如旅行商问题 (TSP),有现实世界的应用,如路径查找和 VLSI 设计。现在想象一下,您正在使用 GPS 导航系统,需要几分钟(甚至几个小时)来计算从源到目的地的"最佳"路径。在这种实际应用中,延迟是不可接受的,因此需要"快速"交付的"足够好"的解决方案。
如何使用 GA 解决优化问题?
我们已经知道,优化是一种使设计、情况、资源和系统等尽可能有效的行为。优化过程如下图所示。
GA 机制用于优化过程的阶段
以下是 GA 机制用于优化问题的阶段。
随机生成初始种群。
选择具有最佳适应度值的初始解决方案。
使用突变和交叉运算符重新组合选定的解决方案。
将后代插入种群。
现在,如果满足停止条件,则返回具有最佳适应度值的解决方案。否则,转到步骤 2。