Python - 标记词
标记是文本处理的一项基本功能,我们将单词标记为语法分类。 我们借助标记化和 pos_tag 函数为每个单词创建标签。
import nltk text = nltk.word_tokenize("A Python is a serpent which eats eggs from the nest") tagged_text=nltk.pos_tag(text) print(tagged_text)
当我们运行上面的程序时,得到以下输出 −
[('A', 'DT'), ('Python', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('serpent', 'NN'), ('which', 'WDT'), ('eats', 'VBZ'), ('eggs', 'NNS'), ('from', 'IN'), ('the', 'DT'), ('nest', 'JJS')]
标签说明
我们可以使用以下显示内置值的程序来描述每个标签的含义。
import nltk nltk.help.upenn_tagset('NN') nltk.help.upenn_tagset('IN') nltk.help.upenn_tagset('DT')
当我们运行上面的程序时,得到以下输出 −
NN: noun, common, singular or mass common-carrier cabbage knuckle-duster Casino afghan shed thermostat investment slide humour falloff slick wind hyena override subhumanity machinist ... IN: preposition or conjunction, subordinating astride among uppon whether out inside pro despite on by throughout below within for towards near behind atop around if like until below next into if beside ... DT: determiner all an another any both del each either every half la many much nary neither no some such that the them these this those
给语料库打标签
我们还可以标记语料库数据并查看该语料库中每个单词的标记结果。
import nltk from nltk.tokenize import sent_tokenize from nltk.corpus import gutenberg sample = gutenberg.raw("blake-poems.txt") tokenized = sent_tokenize(sample) for i in tokenized[:2]: words = nltk.word_tokenize(i) tagged = nltk.pos_tag(words) print(tagged)
当我们运行上面的程序时,得到以下输出 −
[([', 'JJ'), (Poems', 'NNP'), (by', 'IN'), (William', 'NNP'), (Blake', 'NNP'), (1789', 'CD'), (]', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (AND', 'NNP'), (OF', 'NNP'), (EXPERIENCE', 'NNP'), (and', 'CC'), (THE', 'NNP'), (BOOK', 'NNP'), (of', 'IN'), (THEL', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (INTRODUCTION', 'NNP'), (Piping', 'VBG'), (down', 'RP'), (the', 'DT'), (valleys', 'NN'), (wild', 'JJ'), (,', ','), (Piping', 'NNP'), (songs', 'NNS'), (of', 'IN'), (pleasant', 'JJ'), (glee', 'NN'), (,', ','), (On', 'IN'), (a', 'DT'), (cloud', 'NN'), (I', 'PRP'), (saw', 'VBD'), (a', 'DT'), (child', 'NN'), (,', ','), (And', 'CC'), (he', 'PRP'), (laughing', 'VBG'), (said', 'VBD'), (to', 'TO'), (me', 'PRP'), (:', ':'), (``', '``'), (Pipe', 'VB'), (a', 'DT'), (song', 'NN'), (about', 'IN'), (a', 'DT'), (Lamb', 'NN'), (!', '.'), (u"''", "''")]