Python Pandas - 描述性统计

大量方法共同计算 DataFrame 上的描述性统计和其他相关操作。 其中大多数是像 sum()、mean() 这样的聚合,但其中一些像 sumsum() 会产生相同大小的对象。 一般来说,这些方法采用 axis 参数,就像 ndarray.{sum, std, ...}, 但轴可以通过名称或整数指定

  • DataFrame − “index” (axis=0, default), “columns” (axis=1)

让我们创建一个 DataFrame 并在本章中使用该对象进行所有操作。

示例

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df

它的输出如下 −

    Age  Name   Rating
0   25   Tom     4.23
1   26   James   3.24
2   25   Ricky   3.98
3   23   Vin     2.56
4   30   Steve   3.20
5   29   Smith   4.60
6   23   Jack    3.80
7   34   Lee     3.78
8   40   David   2.98
9   30   Gasper  4.80
10  51   Betina  4.10
11  46   Andres  3.65

sum()

返回请求轴的值的总和。 默认情况下,轴是索引(axis=0)。

import pandas as pd
import numpy as np
 
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df.sum()

它的输出如下 −

Age                                                    382
Name     TomJamesRickyVinSteveSmithJackLeeDavidGasperBe...
Rating                                               44.92
dtype: object

每个单独的列都是单独添加的(附加字符串)。

axis=1

此语法将给出如下所示的输出。

import pandas as pd
import numpy as np
 
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}
 
#Create a DataFrame
df = pd.DataFrame(d)
print df.sum(1)

它的输出如下 −

0    29.23
1    29.24
2    28.98
3    25.56
4    33.20
5    33.60
6    26.80
7    37.78
8    42.98
9    34.80
10   55.10
11   49.65
dtype: float64

mean()

返回平均值

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df.mean()

它的输出如下 −

Age       31.833333
Rating     3.743333
dtype: float64

std()

返回数值列的 Bressel 标准差。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df.std()

它的输出如下 −

Age       9.232682
Rating    0.661628
dtype: float64

函数 & 描述

现在让我们了解 Python Pandas 中描述性统计下的函数。 下表列出了重要的功能 −

序号 函数 描述
1 count() 非空观测数
2 sum() 值的总和
3 mean() 平均值
4 median() 值的中位数
5 mode() 模式值
6 std() 值的标准差
7 min() 最小值
8 max() 最大值
9 abs() 绝对值
10 prod() Product of Values
11 cumsum() 累积总和
12 cumprod() Cumulative Product

注意 − 由于 DataFrame 是异构数据结构。 泛型操作不适用于所有功能。

  • sum()、cumsum() 之类的函数可以同时处理数字和字符(或)字符串数据元素而不会出现任何错误。 尽管 n 实践,一般从不使用字符聚合,但这些函数不会抛出任何异常。

  • abs()、cumprod() 等函数在 DataFrame 包含字符或字符串数据时会抛出异常,因为此类操作无法执行。


汇总数据

describe() 函数计算与 DataFrame 列有关的统计信息摘要。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df.describe()

它的输出如下 −

               Age         Rating
count    12.000000      12.000000
mean     31.833333       3.743333
std       9.232682       0.661628
min      23.000000       2.560000
25%      25.000000       3.230000
50%      29.500000       3.790000
75%      35.500000       4.132500
max      51.000000       4.800000

此函数给出 mean、stdIQR 值。 并且,函数排除了字符列并给出了关于数字列的摘要。 'include' 是用于传递关于需要考虑哪些列进行汇总的必要信息的参数。 获取值列表; 默认为 'number'。

  • object − 汇总字符串列
  • number − 汇总数值列
  • all − 将所有列汇总在一起(不应将其作为列表值传递)

现在,在程序中使用以下语句并检查输出 −

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df.describe(include=['object'])

它的输出如下 −

          Name
count       12
unique      12
top      Ricky
freq         1

现在,使用以下语句并检查输出 −

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}

#Create a DataFrame
df = pd.DataFrame(d)
print df. describe(include='all')

它的输出如下 −

          Age          Name       Rating
count   12.000000        12    12.000000
unique        NaN        12          NaN
top           NaN     Ricky          NaN
freq          NaN         1          NaN
mean    31.833333       NaN     3.743333
std      9.232682       NaN     0.661628
min     23.000000       NaN     2.560000
25%     25.000000       NaN     3.230000
50%     29.500000       NaN     3.790000
75%     35.500000       NaN     4.132500
max     51.000000       NaN     4.800000