使用 ResNet 模型进行实时预测
ResNet 是一个预训练模型。它使用 ImageNet 进行训练。ResNet 模型权重在 ImageNet 上进行了预训练。它具有以下语法−
keras.applications.resnet.ResNet50 ( include_top = True, weights = 'imagenet', input_tensor = None, input_shape = None, pooling = None, classes = 1000 )
此处,
include_top 指网络顶部的全连接层。
weights 指在 ImageNet 上进行的预训练。
input_tensor 指可选的 Keras 张量,用作模型的图像输入。
input_shape 指可选的形状元组。此模型的默认输入大小为 224x224。
classes 指的是用于对图像进行分类的可选类数。
让我们通过编写一个简单的示例来理解该模型 −
步骤 1:导入模块
让我们加载下面指定的必要模块 −
>>> import PIL >>> from keras.preprocessing.image import load_img >>> from keras.preprocessing.image import img_to_array >>> from keras.applications.imagenet_utils import decode_predictions >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from keras.applications.resnet50 import ResNet50 >>> from keras.applications import resnet50
步骤 2:选择输入
让我们选择一个输入图像,Lotus,如下所示 −
>>> filename = 'banana.jpg' >>> ## load an image in PIL format >>> original = load_img(filename, target_size = (224, 224)) >>> print('PIL image size',original.size) PIL image size (224, 224) >>> plt.imshow(original) <matplotlib.image.AxesImage object at 0x1304756d8> >>> plt.show()
这里,我们加载了图像(banana.jpg)并显示它。
步骤 3:将图像转换为 NumPy 数组
让我们将输入Banana转换为 NumPy 数组,以便可以将其传递到模型中进行预测。
>>> #convert the PIL image to a numpy array >>> numpy_image = img_to_array(original) >>> plt.imshow(np.uint8(numpy_image)) <matplotlib.image.AxesImage object at 0x130475ac8> >>> print('numpy array size',numpy_image.shape) numpy array size (224, 224, 3) >>> # Convert the image / images into batch format >>> image_batch = np.expand_dims(numpy_image, axis = 0) >>> print('image batch size', image_batch.shape) image batch size (1, 224, 224, 3) >>>
步骤 4:模型预测
让我们将输入输入到模型中以获得预测
>>> prepare the image for the resnet50 model >>> >>> processed_image = resnet50.preprocess_input(image_batch.copy()) >>> # create resnet model >>>resnet_model = resnet50.ResNet50(weights = 'imagenet') >>> Downloavding data from https://github.com/fchollet/deep-learning-models/releas es/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5 102858752/102853048 [==============================] - 33s 0us/step >>> # get the predicted probabilities for each class >>> predictions = resnet_model.predict(processed_image) >>> # convert the probabilities to class labels >>> label = decode_predictions(predictions) Downloading data from https://storage.googleapis.com/download.tensorflow.org/ data/imagenet_class_index.json 40960/35363 [==================================] - 0s 0us/step >>> print(label)
输出
[ [ ('n07753592', 'banana', 0.99229723), ('n03532672', 'hook', 0.0014551596), ('n03970156', 'plunger', 0.0010738898), ('n07753113', 'fig', 0.0009359837) , ('n03109150', 'corkscrew', 0.00028538404) ] ]
在这里,模型正确地将图像预测为banana(香蕉)。