在 Python 中,当系数为多维时,在点 x 处评估 Hermite_e 系列
pythonnumpyserver side programmingprogramming
要在点 x 处评估 Hermite_e 系列,必须在 Python Numpy 中的 hermite.hermeval() 方法中。 第一个参数 x,如果 x 是列表或元组,则将其转换为 ndarray,否则保持不变并视为标量。无论哪种情况,x 或其元素都必须支持与自身以及 c 元素的加法和乘法。
第二个参数 C,一个按顺序排列的系数数组,以便 n 次项的系数包含在 c[n] 中。如果 c 是多维的,则其余索引枚举多个多项式。在二维情况下,系数可以被认为存储在 c 的列中。
第三个参数张量,如果为 True,则系数数组的形状在右侧扩展为 1,x 的每个维度一个。标量在此操作中的维度为 0。结果是 c 中的每一列系数都针对 x 的每个元素进行评估。如果为 False,则 x 将在 c 的列上广播以进行评估。当 c 是多维时,此关键字很有用。默认值为 True。
步骤
首先,导入所需的库 −
import numpy as np from numpy.polynomial import hermite_e as H
创建系数的多维数组 −
c = np.arange(4).reshape(2,2)
显示数组 −
print("我们的数组...\n",c)
检查维度 −
print("\n我们的数组的维度...\n",c.ndim)
获取数据类型 −
print("\n我们的数组对象的数据类型...\n",c.dtype)
获取形状 −
print("\n我们的数组对象的形状...\n",c.shape)
要在点 x 处评估 Hermite_e 系列,请使用 Python Numpy 中的 hermite.hermeval() 方法 −
print("\n结果...\n",H.hermeval([1,2],c))
示例
import numpy as np from numpy.polynomial import hermite_e as H # 创建系数的多维数组 c = np.arange(4).reshape(2,2) # 显示数组 print("我们的数组...\n",c) # 检查维度 print("\n我们的数组的维度...\n",c.ndim) # 获取数据类型 print("\n我们的数组对象的数据类型...\n",c.dtype) # 获取形状 print("\n我们的数组对象的形状...\n",c.shape) # 要在点 x 处评估 Hermite_e 系列,请使用 Python Numpy 中的 hermite.hermeval() 方法 print("\n结果...\n",H.hermeval([1,2],c))
输出
我们的数组... [[0 1] [2 3]] 我们的数组的维度... 2 我们的数组对象的数据类型... int64 我们的数组对象的形状... (2, 2) 结果... [[2. 4.] [4. 7.]]