HiveQL - Select-Joins
JOIN 是一个子句,用于使用每个表的公共值来组合两个表中的特定字段。它用于组合数据库中两个或多个表中的记录。
语法
join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition | table_reference CROSS JOIN table_reference [join_condition]
示例
我们将在本章中使用以下两个表。考虑以下名为 CUSTOMERS 的表。
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
考虑另一个表 ORDERS,如下所示:
+-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+
有不同类型的连接,如下所示:
- JOIN
- LEFT OUTER JOIN
- RIGHT OUTER JOIN
- FULL OUTER JOIN
JOIN
JOIN 子句用于组合和检索来自多个表的记录。JOIN 与 SQL 中的 OUTER JOIN 相同。使用表的主键和外键可以提出 JOIN 条件。
以下查询在 CUSTOMER 和 ORDER 表上执行 JOIN,并检索记录:
hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT FROM CUSTOMERS c JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+
LEFT OUTER JOIN
HiveQL LEFT OUTER JOIN 返回左表中的所有行,即使右表中没有匹配项。这意味着,如果 ON 子句匹配右表中的 0(零)条记录,JOIN 仍会在结果中返回一行,但右表的每一列都为 NULL。
LEFT JOIN 返回左表中的所有值,加上右表中匹配的值,如果没有匹配的 JOIN 谓词,则返回 NULL。
以下查询演示了 CUSTOMER 和 ORDER 表之间的 LEFT OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c LEFT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+
RIGHT OUTER JOIN
HiveQL RIGHT OUTER JOIN 返回右表中的所有行,即使左表中没有匹配项。如果 ON 子句匹配左表中的 0(零)条记录,JOIN 仍会在结果中返回一行,但左表的每一列都为 NULL。
RIGHT JOIN 返回右表中的所有值,以及左表中匹配的值,如果没有匹配的连接谓词,则返回 NULL。
以下查询演示了 CUSTOMER 和 ORDER 表之间的 RIGHT OUTER JOIN。
notranslate"> hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c RIGHT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);成功执行查询后,您将看到以下响应:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+
FULL OUTER JOIN
HiveQL FULL OUTER JOIN 将满足 JOIN 条件的左外部表和右外部表的记录组合在一起。连接表要么包含两个表的所有记录,要么为任一侧的缺失匹配项填充 NULL 值。
以下查询演示了 CUSTOMER 和 ORDER 表之间的 FULL OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c FULL OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+