用 Python 编写一个程序来为给定的数据框本地化亚洲时区

pythonpandasserver side programmingprogramming

假设您有一个时间序列,并且本地化亚洲时区的结果是,

索引为:
DatetimeIndex(['2020-01-05 00:30:00+05:30', '2020-01-12 00:30:00+05:30',
               '2020-01-19 00:30:00+05:30', '2020-01-26 00:30:00+05:30',
               '2020-02-02 00:30:00+05:30'],
                dtype='datetime64[ns, Asia/Calcutta]', freq='W-SUN')

解决方案

  • 定义数据框

  • 使用 pd.date_range() 函数创建时间序列,起始为‘2020-01-01 00:30’,periods=5 且 tz = ‘Asia/Calcutta’然后将其存储为 time_index。

time_index = pd.date_range('2020-01-01 00:30', periods = 5, freq ='W',tz = 'Asia/Calcutta')
  • 设置 df.index 以从 time_index 存储本地化时区

df.index = time_index
  • 最后打印本地化时区

示例

让我们检查以下代码以获得更好的理解 −

import pandas as pd
df = pd.DataFrame({'Id':[1,2,3,4,5],
                     'City':['Mumbai','Pune','Delhi','Chennai','Kolkata']})
time_index = pd.date_range('2020-01-01 00:30', periods = 5, freq ='W', tz = 'Asia/Calcutta')
df.index = time_index
print("DataFrame is:\n",df)
print("Index is:\n",df.index)

输出

DataFrame is:
                          Id City
2020-01-05 00:30:00+05:30 1 Mumbai
2020-01-12 00:30:00+05:30 2 Pune
2020-01-19 00:30:00+05:30 3 Delhi
2020-01-26 00:30:00+05:30 4 Chennai
2020-02-02 00:30:00+05:30 5 Kolkata
Index is:
DatetimeIndex(['2020-01-05 00:30:00+05:30', '2020-01-12 00:30:00+05:30',
               '2020-01-19 00:30:00+05:30', '2020-01-26 00:30:00+05:30',
               '2020-02-02 00:30:00+05:30'],
               dtype='datetime64[ns, Asia/Calcutta]', freq='W-SUN')

相关文章