如何使用 Tensorflow 和预训练模型查看每个 epoch 后训练期间的变化?

tensorflowserver side programmingprogramming

借助‘evaluate’方法和‘fit’方法,可以使用 Tensorflow 和预训练模型查看每个 epoch 后训练期间的变化。

阅读更多: 什么是 TensorFlow,以及 Keras 如何与 TensorFlow 配合使用来创建神经网络?

包含至少一个层的神经网络称为卷积层。我们可以使用卷积神经网络构建学习模型。

我们将了解如何借助预训练网络的迁移学习对猫和狗的图像进行分类。图像分类迁移学习背后的直觉是,如果在大型通用数据集上训练模型,则该模型可有效地用作视觉世界的通用模型。它会学习特征图,这意味着用户不必从头开始在大型数据集上训练大型模型。

阅读更多: 如何预先训练定制模型?

我们使用 Google Colaboratory 运行以下代码。Google Colab 或 Colaboratory 有助于在浏览器上运行 Python 代码,并且不需要任何配置,并且可以免费访问 GPU(图形处理单元)。Colaboratory 是在 Jupyter Notebook 之上构建的。

示例

print("The number of epochs have been defined")
initial_epochs = 10
print("The model is being evaluated")
loss0, accuracy0 = model.evaluate(validation_dataset)
print("Initial loss is: {:.2f}".format(loss0))
print("Initial accuracy is: {:.2f}".format(accuracy0))
history = model.fit(train_dataset,
epochs=initial_epochs,
validation_data=validation_dataset)

代码来源 −https://www.tensorflow.org/tutorials/images/transfer_learning

输出

The number of epochs have been defined
The model is being evaluated
26/26 [==============================] - 15s 485ms/step - loss: 0.8892 - accuracy: 0.4216
Initial loss is: 0.92
Initial accuracy is: 0.40
Epoch 1/10
63/63 [==============================] - 53s 793ms/step - loss: 0.7830 - accuracy: 0.5455 - val_loss: 0.6227 - val_accuracy: 0.6213
Epoch 2/10
63/63 [==============================] - 50s 792ms/step - loss: 0.5893 - accuracy: 0.6770 - val_loss: 0.4499 - val_accuracy: 0.7525
Epoch 3/10
63/63 [==============================] - 51s 799ms/step - loss: 0.4645 - accuracy: 0.7565 - val_loss: 0.3484 - val_accuracy: 0.8317
Epoch 4/10
63/63 [==============================] - 51s 803ms/step - loss: 0.4004 - accuracy: 0.8095 - val_loss: 0.2806 - val_accuracy: 0.8725
Epoch 5/10
63/63 [==============================] - 51s 799ms/step - loss: 0.3424 - accuracy: 0.8325 - val_loss: 0.2412 - val_accuracy: 0.8936
Epoch 6/10
63/63 [==============================] - 50s 790ms/step - loss: 0.3094 - accuracy: 0.8655 - val_loss: 0.2075 - val_accuracy: 0.9146
Epoch 7/10
63/63 [==============================] - 50s 785ms/step - loss: 0.2819 - accuracy: 0.8745 - val_loss: 0.1789 - val_accuracy: 0.9257
Epoch 8/10
63/63 [==============================] - 51s 812ms/step - loss: 0.2508 - accuracy: 0.8870 - val_loss: 0.1638 - val_accuracy: 0.9282
Epoch 9/10
63/63 [==============================] - 50s 797ms/step - loss: 0.2413 - accuracy: 0.8965 - val_loss: 0.1560 - val_accuracy: 0.9332
Epoch 10/10
63/63 [==============================] - 52s 818ms/step - loss: 0.2324 - accuracy: 0.8995 - val_loss: 0.1336 - val_accuracy: 0.9493

解释

  • 经过 10 个 epoch 的训练后,计算出验证集上的准确率。

  • 此值显示在控制台上。


相关文章